Properties

Label 3600.z
Number of curves $2$
Conductor $3600$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("z1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3600.z

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3600.z1 3600bl2 \([0, 0, 0, -273000, -54902500]\) \(-30866268160/3\) \(-218700000000\) \([]\) \(17280\) \(1.6092\)  
3600.z2 3600bl1 \([0, 0, 0, -3000, -92500]\) \(-40960/27\) \(-1968300000000\) \([]\) \(5760\) \(1.0599\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 3600.z have rank \(0\).

Complex multiplication

The elliptic curves in class 3600.z do not have complex multiplication.

Modular form 3600.2.a.z

sage: E.q_eigenform(10)
 
\(q + q^{7} + 6q^{11} + 5q^{13} + 6q^{17} - 5q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.