Show commands: SageMath
Rank
The elliptic curves in class 3600.bp have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 3600.bp do not have complex multiplication.Modular form 3600.2.a.bp
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 3600.bp
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 3600.bp1 | 3600g2 | \([0, 0, 0, -2835, 58050]\) | \(1000188\) | \(2519424000\) | \([2]\) | \(3072\) | \(0.72338\) | |
| 3600.bp2 | 3600g1 | \([0, 0, 0, -135, 1350]\) | \(-432\) | \(-629856000\) | \([2]\) | \(1536\) | \(0.37680\) | \(\Gamma_0(N)\)-optimal |