Learn more

Refine search


Results (1-50 of 118 matches)

Next   Download to          
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
3600.a1 3600.a \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -52500, 5537500]$ \(y^2=x^3-52500x+5537500\)
3600.b1 3600.b \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $-3$ $1.007478452$ $[0, 0, 0, 0, -10000]$ \(y^2=x^3-10000\)
3600.b2 3600.b \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $-3$ $3.022435358$ $[0, 0, 0, 0, 270000]$ \(y^2=x^3+270000\)
3600.c1 3600.c \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -7875, -268750]$ \(y^2=x^3-7875x-268750\)
3600.c2 3600.c \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -375, -6250]$ \(y^2=x^3-375x-6250\)
3600.d1 3600.d \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -3000, 59375]$ \(y^2=x^3-3000x+59375\)
3600.d2 3600.d \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 2625, 256250]$ \(y^2=x^3+2625x+256250\)
3600.e1 3600.e \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $-12$ $1$ $[0, 0, 0, -3375, 74250]$ \(y^2=x^3-3375x+74250\)
3600.e2 3600.e \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $-12$ $1$ $[0, 0, 0, -375, -2750]$ \(y^2=x^3-375x-2750\)
3600.e3 3600.e \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $-3$ $1$ $[0, 0, 0, 0, -125]$ \(y^2=x^3-125\)
3600.e4 3600.e \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $-3$ $1$ $[0, 0, 0, 0, 3375]$ \(y^2=x^3+3375\)
3600.f1 3600.f \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $11.06231031$ $[0, 0, 0, -19200675, -32383430750]$ \(y^2=x^3-19200675x-32383430750\)
3600.f2 3600.f \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $2.765577577$ $[0, 0, 0, -1632675, -109286750]$ \(y^2=x^3-1632675x-109286750\)
3600.f3 3600.f \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.531155155$ $[0, 0, 0, -1200675, -505430750]$ \(y^2=x^3-1200675x-505430750\)
3600.f4 3600.f \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.921859192$ $[0, 0, 0, -1038675, 407439250]$ \(y^2=x^3-1038675x+407439250\)
3600.f5 3600.f \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $3.687436770$ $[0, 0, 0, -246675, -40616750]$ \(y^2=x^3-246675x-40616750\)
3600.f6 3600.f \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.843718385$ $[0, 0, 0, -66675, 6003250]$ \(y^2=x^3-66675x+6003250\)
3600.f7 3600.f \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $2.765577577$ $[0, 0, 0, -48675, -13526750]$ \(y^2=x^3-48675x-13526750\)
3600.f8 3600.f \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.921859192$ $[0, 0, 0, 5325, 459250]$ \(y^2=x^3+5325x+459250\)
3600.g1 3600.g \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -70875, 7256250]$ \(y^2=x^3-70875x+7256250\)
3600.g2 3600.g \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -3375, 168750]$ \(y^2=x^3-3375x+168750\)
3600.h1 3600.h \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -24075, -1437750]$ \(y^2=x^3-24075x-1437750\)
3600.h2 3600.h \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -1575, -20250]$ \(y^2=x^3-1575x-20250\)
3600.h3 3600.h \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -450, 3375]$ \(y^2=x^3-450x+3375\)
3600.h4 3600.h \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 2925, -114750]$ \(y^2=x^3+2925x-114750\)
3600.i1 3600.i \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $0.465370719$ $[0, 0, 0, 1500, -2500]$ \(y^2=x^3+1500x-2500\)
3600.j1 3600.j \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $4.591654055$ $[0, 0, 0, -30000, -2050000]$ \(y^2=x^3-30000x-2050000\)
3600.j2 3600.j \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $0.918330811$ $[0, 0, 0, 240, 6320]$ \(y^2=x^3+240x+6320\)
3600.k1 3600.k \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.736278429$ $[0, 0, 0, -6375, 193750]$ \(y^2=x^3-6375x+193750\)
3600.k2 3600.k \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $3.472556859$ $[0, 0, 0, -750, -3125]$ \(y^2=x^3-750x-3125\)
3600.l1 3600.l \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -18075, -935350]$ \(y^2=x^3-18075x-935350\)
3600.l2 3600.l \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -10875, 526250]$ \(y^2=x^3-10875x+526250\)
3600.l3 3600.l \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -75, -2950]$ \(y^2=x^3-75x-2950\)
3600.l4 3600.l \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 79125, -3883750]$ \(y^2=x^3+79125x-3883750\)
3600.m1 3600.m \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $0.610280505$ $[0, 0, 0, 1125, -33750]$ \(y^2=x^3+1125x-33750\)
3600.n1 3600.n \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.077766827$ $[0, 0, 0, -1515, -14150]$ \(y^2=x^3-1515x-14150\)
3600.n2 3600.n \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $0.538883413$ $[0, 0, 0, 285, -1550]$ \(y^2=x^3+285x-1550\)
3600.o1 3600.o \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -2980875, 1974456250]$ \(y^2=x^3-2980875x+1974456250\)
3600.o2 3600.o \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -190875, -32093750]$ \(y^2=x^3-190875x-32093750\)
3600.o3 3600.o \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -100875, 59256250]$ \(y^2=x^3-100875x+59256250\)
3600.o4 3600.o \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -10875, -593750]$ \(y^2=x^3-10875x-593750\)
3600.p1 3600.p \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $0.900391054$ $[0, 0, 0, -540, 4860]$ \(y^2=x^3-540x+4860\)
3600.q1 3600.q \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $[0, 0, 0, 0, -12500]$ \(y^2=x^3-12500\)
3600.q2 3600.q \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $[0, 0, 0, 0, 337500]$ \(y^2=x^3+337500\)
3600.r1 3600.r \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $2.051775964$ $[0, 0, 0, -60, -180]$ \(y^2=x^3-60x-180\)
3600.s1 3600.s \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $3.746882656$ $[0, 0, 0, -10920, -439220]$ \(y^2=x^3-10920x-439220\)
3600.s2 3600.s \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $1.248960885$ $[0, 0, 0, -120, -740]$ \(y^2=x^3-120x-740\)
3600.t1 3600.t \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -720075, -235187750]$ \(y^2=x^3-720075x-235187750\)
3600.t2 3600.t \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -45075, -3662750]$ \(y^2=x^3-45075x-3662750\)
3600.t3 3600.t \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -18075, -8009750]$ \(y^2=x^3-18075x-8009750\)
Next   Download to