Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 360.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
360.a1 | 360e3 | \([0, 0, 0, -963, 11502]\) | \(132304644/5\) | \(3732480\) | \([2]\) | \(128\) | \(0.34709\) | |
360.a2 | 360e2 | \([0, 0, 0, -63, 162]\) | \(148176/25\) | \(4665600\) | \([2, 2]\) | \(64\) | \(0.00051877\) | |
360.a3 | 360e1 | \([0, 0, 0, -18, -27]\) | \(55296/5\) | \(58320\) | \([2]\) | \(32\) | \(-0.34606\) | \(\Gamma_0(N)\)-optimal |
360.a4 | 360e4 | \([0, 0, 0, 117, 918]\) | \(237276/625\) | \(-466560000\) | \([2]\) | \(128\) | \(0.34709\) |
Rank
sage: E.rank()
The elliptic curves in class 360.a have rank \(1\).
Complex multiplication
The elliptic curves in class 360.a do not have complex multiplication.Modular form 360.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.