Show commands for:
SageMath
sage: E = EllipticCurve("de1")
sage: E.isogeny_class()
Elliptic curves in class 35904.de
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
35904.de1 | 35904ck1 | [0, 1, 0, -57857, -5333505] | [2] | 215040 | \(\Gamma_0(N)\)-optimal |
35904.de2 | 35904ck2 | [0, 1, 0, -16897, -12698113] | [2] | 430080 |
Rank
sage: E.rank()
The elliptic curves in class 35904.de have rank \(1\).
Complex multiplication
The elliptic curves in class 35904.de do not have complex multiplication.Modular form 35904.2.a.de
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.