Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-13299866x-18656185104\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-13299866xz^2-18656185104z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-17236626363x-870371262333162\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-8609/4, 8609/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 3570 \) | = | $2 \cdot 3 \cdot 5 \cdot 7 \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $223081361502731896500$ | = | $2^{2} \cdot 3^{8} \cdot 5^{3} \cdot 7^{12} \cdot 17^{3} $ |
|
| j-invariant: | $j$ | = | \( \frac{260174968233082037895439009}{223081361502731896500} \) | = | $2^{-2} \cdot 3^{-8} \cdot 5^{-3} \cdot 7^{-12} \cdot 11^{3} \cdot 17^{-3} \cdot 97^{3} \cdot 598307^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.8312171743775308659336116663$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.8312171743775308659336116663$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0332562394853404$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.435331391320939$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.079060597625860806877817867708$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 192 $ = $ 2\cdot2^{3}\cdot1\cdot( 2^{2} \cdot 3 )\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $3.7949086860413187301352576500 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 3.794908686 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.079061 \cdot 1.000000 \cdot 192}{2^2} \\ & \approx 3.794908686\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 221184 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $3$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
| $5$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
| $7$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 |
| $17$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
| $3$ | 3B.1.2 | 3.8.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 14280 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 6121 & 24 \\ 2052 & 289 \end{array}\right),\left(\begin{array}{rr} 5896 & 3 \\ 13821 & 14194 \end{array}\right),\left(\begin{array}{rr} 10711 & 24 \\ 10710 & 1 \end{array}\right),\left(\begin{array}{rr} 2872 & 21 \\ 13995 & 13906 \end{array}\right),\left(\begin{array}{rr} 14257 & 24 \\ 14256 & 25 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6561 & 4168 \\ 2516 & 509 \end{array}\right),\left(\begin{array}{rr} 11901 & 9524 \\ 20 & 7221 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 106 \\ 12974 & 5051 \end{array}\right)$.
The torsion field $K:=\Q(E[14280])$ is a degree-$14554402652160$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/14280\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 85 = 5 \cdot 17 \) |
| $3$ | split multiplicative | $4$ | \( 2 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 714 = 2 \cdot 3 \cdot 7 \cdot 17 \) |
| $7$ | split multiplicative | $8$ | \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \) |
| $17$ | nonsplit multiplicative | $18$ | \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 4, 6 and 12.
Its isogeny class 3570v
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{85}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-17}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-5}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-3}) \) | \(\Z/6\Z\) | not in database |
| $3$ | 3.1.972.2 | \(\Z/6\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-5}, \sqrt{-17})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{85})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{-17})\) | \(\Z/12\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{-5})\) | \(\Z/12\Z\) | not in database |
| $6$ | 6.0.2834352.2 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.2.580215474000.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.0.74267580672.8 | \(\Z/12\Z\) | not in database |
| $6$ | 6.0.1889568000.2 | \(\Z/12\Z\) | not in database |
| $8$ | 8.4.1544804416000000.6 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.44408896000000.2 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.1082432160000.2 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
| $18$ | 18.0.311316723042111843639059483124229044316687500000000.5 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 17 |
|---|---|---|---|---|---|
| Reduction type | split | split | nonsplit | split | nonsplit |
| $\lambda$-invariant(s) | 6 | 1 | 0 | 1 | 0 |
| $\mu$-invariant(s) | 1 | 1 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.