Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2-6052x-420482\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z-6052xz^2-420482z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-7844067x-19500350562\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 35574 \) | = | $2 \cdot 3 \cdot 7^{2} \cdot 11^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-61276179746166$ | = | $-1 \cdot 2 \cdot 3 \cdot 7^{8} \cdot 11^{6} $ |
|
| j-invariant: | $j$ | = | \( -\frac{2401}{6} \) | = | $-1 \cdot 2^{-1} \cdot 3^{-1} \cdot 7^{4}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3334241998858392428936854952$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.1627968692168882325408547894$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.1169180726528216$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.76066760595449$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.25208819060142144188019115770$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 3 $ = $ 1\cdot1\cdot3\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $0.75626457180426432564057347311 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.756264572 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.252088 \cdot 1.000000 \cdot 3}{1^2} \\ & \approx 0.756264572\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 99960 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $7$ | $3$ | $IV^{*}$ | additive | 1 | 2 | 8 | 0 |
| $11$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $7$ | 7B.6.3 | 7.24.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1848 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \), index $96$, genus $2$, and generators
$\left(\begin{array}{rr} 1835 & 14 \\ 1834 & 15 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 232 & 847 \\ 385 & 1002 \end{array}\right),\left(\begin{array}{rr} 463 & 1694 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 848 & 847 \\ 77 & 1002 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right),\left(\begin{array}{rr} 879 & 88 \\ 770 & 1231 \end{array}\right),\left(\begin{array}{rr} 1175 & 0 \\ 0 & 1847 \end{array}\right)$.
The torsion field $K:=\Q(E[1848])$ is a degree-$20437401600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1848\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 17787 = 3 \cdot 7^{2} \cdot 11^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 11858 = 2 \cdot 7^{2} \cdot 11^{2} \) |
| $7$ | additive | $26$ | \( 726 = 2 \cdot 3 \cdot 11^{2} \) |
| $11$ | additive | $62$ | \( 294 = 2 \cdot 3 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
7.
Its isogeny class 35574.k
consists of 2 curves linked by isogenies of
degree 7.
Twists
The minimal quadratic twist of this elliptic curve is 294.f2, its twist by $77$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.1.1176.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.33191424.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.3195731.1 | \(\Z/7\Z\) | not in database |
| $8$ | deg 8 | \(\Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $14$ | 14.2.83876874860775669925367808.1 | \(\Z/7\Z\) | not in database |
| $18$ | 18.0.6237033789373014424299503616.1 | \(\Z/14\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | nonsplit | ord | add | add | ss | ord | ord | ord | ord | ord | ord | ss | ord | ord |
| $\lambda$-invariant(s) | 1 | 4 | 2 | - | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 |
| $\mu$-invariant(s) | 0 | 0 | 0 | - | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.