Show commands for:
SageMath
sage: E = EllipticCurve("ct1")
sage: E.isogeny_class()
Elliptic curves in class 35490ct
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
35490.cw3 | 35490ct1 | [1, 1, 1, -595, -3775] | [2] | 36864 | \(\Gamma_0(N)\)-optimal |
35490.cw2 | 35490ct2 | [1, 1, 1, -3975, 92217] | [2, 2] | 73728 | |
35490.cw4 | 35490ct3 | [1, 1, 1, 1095, 317325] | [2] | 147456 | |
35490.cw1 | 35490ct4 | [1, 1, 1, -63125, 6078197] | [2] | 147456 |
Rank
sage: E.rank()
The elliptic curves in class 35490ct have rank \(0\).
Complex multiplication
The elliptic curves in class 35490ct do not have complex multiplication.Modular form 35490.2.a.ct
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.