# Properties

 Label 35490.bo7 Conductor $35490$ Discriminant $1.868\times 10^{13}$ j-invariant $$\frac{7633736209}{3870720}$$ CM no Rank $1$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 1, -6933, -78752]) # or

sage: E = EllipticCurve("35490.bo7")

gp: E = ellinit([1, 0, 1, -6933, -78752]) \\ or

gp: E = ellinit("35490.bo7")

magma: E := EllipticCurve([1, 0, 1, -6933, -78752]); // or

magma: E := EllipticCurve("35490.bo7");

$$y^2+xy+y=x^3-6933x-78752$$

## Mordell-Weil group structure

$$\Z\times \Z/{2}\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(92, 207\right)$$ $$\hat{h}(P)$$ ≈ $1.5873277794840621045708583188$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-77, 38\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-77, 38\right)$$, $$\left(-13, 102\right)$$, $$\left(-13, -90\right)$$, $$\left(92, 207\right)$$, $$\left(92, -300\right)$$, $$\left(1148, 38223\right)$$, $$\left(1148, -39372\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$35490$$ = $$2 \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$18683226132480$$ = $$2^{12} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 13^{6}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{7633736209}{3870720}$$ = $$2^{-12} \cdot 3^{-3} \cdot 5^{-1} \cdot 7^{-1} \cdot 11^{3} \cdot 179^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$1.5873277794840621045708583188$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.55204453030539863489017135972$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$24$$  = $$2\cdot3\cdot1\cdot1\cdot2^{2}$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

Modular form 35490.2.a.bo

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - q^{7} - q^{8} + q^{9} - q^{10} + q^{12} + q^{14} + q^{15} + q^{16} - 6q^{17} - q^{18} + 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 110592 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$5.2576537107959426639178591094428158188$$

## Local data

This elliptic curve is semistable. There are 5 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$I_{12}$$ Non-split multiplicative 1 1 12 12
$$3$$ $$3$$ $$I_{3}$$ Split multiplicative -1 1 3 3
$$5$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1
$$7$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1
$$13$$ $$4$$ $$I_0^{*}$$ Additive 1 2 6 0

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right)$ and has index 6.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B
$$3$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge 5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 nonsplit split split nonsplit ss add ordinary ordinary ss ordinary ordinary ordinary ordinary ordinary ordinary 4 4 4 1 1,1 - 1 1 1,1 1 1 1 1 1 1 0 0 0 0 0,0 - 0 0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3, 4, 6 and 12.
Its isogeny class 35490.bo consists of 8 curves linked by isogenies of degrees dividing 12.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{105})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database $2$ $$\Q(\sqrt{-91})$$ $$\Z/4\Z$$ Not in database $2$ $$\Q(\sqrt{-195})$$ $$\Z/4\Z$$ Not in database $2$ $$\Q(\sqrt{13})$$ $$\Z/6\Z$$ Not in database $4$ $$\Q(\sqrt{-91}, \sqrt{105})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{13}, \sqrt{105})$$ $$\Z/2\Z \times \Z/6\Z$$ Not in database $4$ $$\Q(\sqrt{-7}, \sqrt{13})$$ $$\Z/12\Z$$ Not in database $4$ $$\Q(\sqrt{13}, \sqrt{-15})$$ $$\Z/12\Z$$ Not in database $6$ 6.0.89015574375.3 $$\Z/6\Z$$ Not in database $8$ Deg 8 $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ Deg 8 $$\Z/8\Z$$ Not in database $8$ Deg 8 $$\Z/8\Z$$ Not in database $8$ 8.0.3471607400625.3 $$\Z/2\Z \times \Z/12\Z$$ Not in database $12$ Deg 12 $$\Z/3\Z \times \Z/6\Z$$ Not in database $12$ Deg 12 $$\Z/2\Z \times \Z/6\Z$$ Not in database $12$ Deg 12 $$\Z/12\Z$$ Not in database $12$ Deg 12 $$\Z/12\Z$$ Not in database $16$ Deg 16 $$\Z/4\Z \times \Z/4\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/12\Z$$ Not in database $16$ Deg 16 $$\Z/24\Z$$ Not in database $16$ Deg 16 $$\Z/24\Z$$ Not in database $18$ 18.6.20138731658459202403144136071483200000000.2 $$\Z/18\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.