Properties

Label 354025ce
Number of curves $2$
Conductor $354025$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ce1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 354025ce have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1\)
\(7\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 7 T + 29 T^{2}\) 1.29.h
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 354025ce do not have complex multiplication.

Modular form 354025.2.a.ce

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} - q^{4} - q^{6} - 3 q^{8} - 2 q^{9} + q^{12} - 2 q^{13} - q^{16} - 2 q^{18} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 37 \\ 37 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 354025ce

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
354025.ce2 354025ce1 \([1, 1, 0, -57950, 5822125]\) \(-9317\) \(-2310040783203125\) \([]\) \(1228800\) \(1.6864\) \(\Gamma_0(N)\)-optimal
354025.ce1 354025ce2 \([1, 1, 0, -1503399825, -22437371662250]\) \(-162677523113838677\) \(-2310040783203125\) \([]\) \(45465600\) \(3.4918\)