Show commands for:
SageMath
sage: E = EllipticCurve("ba1")
sage: E.isogeny_class()
Elliptic curves in class 3528ba
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
3528.b2 | 3528ba1 | [0, 0, 0, -147, -37730] | [2] | 4608 | \(\Gamma_0(N)\)-optimal |
3528.b1 | 3528ba2 | [0, 0, 0, -17787, -902090] | [2] | 9216 |
Rank
sage: E.rank()
The elliptic curves in class 3528ba have rank \(0\).
Complex multiplication
The elliptic curves in class 3528ba do not have complex multiplication.Modular form 3528.2.a.ba
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.