Properties

Label 35280et
Number of curves $2$
Conductor $35280$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("et1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 35280et have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 - 3 T + 13 T^{2}\) 1.13.ad
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 35280et do not have complex multiplication.

Modular form 35280.2.a.et

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - 6 q^{11} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 35280et

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
35280.c2 35280et1 \([0, 0, 0, -5628, 158123]\) \(4927700992/151875\) \(607614210000\) \([2]\) \(61440\) \(1.0367\) \(\Gamma_0(N)\)-optimal
35280.c1 35280et2 \([0, 0, 0, -13503, -382102]\) \(4253563312/1476225\) \(94496161939200\) \([2]\) \(122880\) \(1.3833\)