Show commands for:
SageMath
sage: E = EllipticCurve("em1")
sage: E.isogeny_class()
Elliptic curves in class 35280em
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
35280.p3 | 35280em1 | [0, 0, 0, -24843, 951482] | [2] | 147456 | \(\Gamma_0(N)\)-optimal |
35280.p2 | 35280em2 | [0, 0, 0, -165963, -25325062] | [2, 2] | 294912 | |
35280.p4 | 35280em3 | [0, 0, 0, 45717, -85484518] | [2] | 589824 | |
35280.p1 | 35280em4 | [0, 0, 0, -2635563, -1646864422] | [2] | 589824 |
Rank
sage: E.rank()
The elliptic curves in class 35280em have rank \(2\).
Complex multiplication
The elliptic curves in class 35280em do not have complex multiplication.Modular form 35280.2.a.em
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.