Minimal Weierstrass equation
\(y^2=x^3+45717x-85484518\)
Mordell-Weil group structure
\(\Z^2 \times \Z/{2}\Z\)
Infinite order Mordell-Weil generators and heights
\(P\) | = | \( \left(749, 19208\right) \) | \( \left(413, 1960\right) \) |
\(\hat{h}(P)\) | ≈ | $1.5121086228744224947433355576$ | $3.1030469910406233609132615362$ |
Torsion generators
\( \left(406, 0\right) \)
Integral points
\( \left(406, 0\right) \), \((413,\pm 1960)\), \((527,\pm 9218)\), \((631,\pm 13950)\), \((749,\pm 19208)\), \((1981,\pm 88200)\), \((2807,\pm 148862)\), \((77581,\pm 21609000)\)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 35280 \) | = | \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2}\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(-3162999652162560000 \) | = | \(-1 \cdot 2^{13} \cdot 3^{7} \cdot 5^{4} \cdot 7^{10} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{30080231}{9003750} \) | = | \(2^{-1} \cdot 3^{-1} \cdot 5^{-4} \cdot 7^{-4} \cdot 311^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(2\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(4.3526363601801853855830681624\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.11848987186277878311126673716\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 64 \) = \( 2^{2}\cdot2\cdot2\cdot2^{2} \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(2\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (rounded) |
Modular invariants
Modular form 35280.2.a.p
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 589824 | ||
\( \Gamma_0(N) \)-optimal: | no | ||
Manin constant: | 1 |
Special L-value
\( L^{(2)}(E,1)/2! \) ≈ \( 8.2518931933283520840949865577079305963 \)
Local data
This elliptic curve is not semistable. There are 4 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(4\) | \(I_5^{*}\) | Additive | -1 | 4 | 13 | 1 |
\(3\) | \(2\) | \(I_1^{*}\) | Additive | -1 | 2 | 7 | 1 |
\(5\) | \(2\) | \(I_{4}\) | Non-split multiplicative | 1 | 1 | 4 | 4 |
\(7\) | \(4\) | \(I_4^{*}\) | Additive | -1 | 2 | 10 | 4 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right)$ and has index 6.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | B |
$p$-adic data
$p$-adic regulators
\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | nonsplit | add | ordinary | ordinary | ordinary | ss | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary | ordinary |
$\lambda$-invariant(s) | - | - | 2 | - | 2 | 2 | 2 | 2,2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
$\mu$-invariant(s) | - | - | 0 | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class 35280.p
consists of 3 curves linked by isogenies of
degrees dividing 4.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-6}) \) | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$2$ | \(\Q(\sqrt{42}) \) | \(\Z/4\Z\) | Not in database |
$2$ | \(\Q(\sqrt{-7}) \) | \(\Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{-6}, \sqrt{-7})\) | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | 8.0.29365647704064.30 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | 8.4.2039281090560000.93 | \(\Z/8\Z\) | Not in database |
$8$ | 8.0.70013160000.11 | \(\Z/8\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/4\Z \times \Z/4\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/12\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/12\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.