# Properties

 Label 35280.ev Number of curves $2$ Conductor $35280$ CM no Rank $1$ Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("35280.ev1")

sage: E.isogeny_class()

## Elliptic curves in class 35280.ev

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
35280.ev1 35280fj1 [0, 0, 0, -105987, 5075714] [2] 258048 $$\Gamma_0(N)$$-optimal
35280.ev2 35280fj2 [0, 0, 0, 387933, 38958626] [2] 516096

## Rank

sage: E.rank()

The elliptic curves in class 35280.ev have rank $$1$$.

## Modular form 35280.2.a.ev

sage: E.q_eigenform(10)

$$q + q^{5} + 2q^{11} - 2q^{13} - 4q^{17} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.