# Properties

 Label 3528.w Number of curves $4$ Conductor $3528$ CM no Rank $0$ Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("w1")

sage: E.isogeny_class()

## Elliptic curves in class 3528.w

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
3528.w1 3528x3 [0, 0, 0, -67179, 6693302] [2] 12288
3528.w2 3528x2 [0, 0, 0, -5439, 37730] [2, 2] 6144
3528.w3 3528x1 [0, 0, 0, -3234, -70315] [2] 3072 $$\Gamma_0(N)$$-optimal
3528.w4 3528x4 [0, 0, 0, 21021, 297038] [2] 12288

## Rank

sage: E.rank()

The elliptic curves in class 3528.w have rank $$0$$.

## Complex multiplication

The elliptic curves in class 3528.w do not have complex multiplication.

## Modular form3528.2.a.w

sage: E.q_eigenform(10)

$$q + 2q^{5} + 2q^{13} + 6q^{17} + 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.