Show commands for:
SageMath
sage: E = EllipticCurve("w1")
sage: E.isogeny_class()
Elliptic curves in class 3528.w
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
3528.w1 | 3528x3 | [0, 0, 0, -67179, 6693302] | [2] | 12288 | |
3528.w2 | 3528x2 | [0, 0, 0, -5439, 37730] | [2, 2] | 6144 | |
3528.w3 | 3528x1 | [0, 0, 0, -3234, -70315] | [2] | 3072 | \(\Gamma_0(N)\)-optimal |
3528.w4 | 3528x4 | [0, 0, 0, 21021, 297038] | [2] | 12288 |
Rank
sage: E.rank()
The elliptic curves in class 3528.w have rank \(0\).
Complex multiplication
The elliptic curves in class 3528.w do not have complex multiplication.Modular form 3528.2.a.w
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.