# Properties

 Label 3528.u Number of curves $2$ Conductor $3528$ CM no Rank $0$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("u1")

sage: E.isogeny_class()

## Elliptic curves in class 3528.u

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
3528.u1 3528d2 [0, 0, 0, -5439, -154350]  3072
3528.u2 3528d1 [0, 0, 0, -294, -3087]  1536 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 3528.u have rank $$0$$.

## Complex multiplication

The elliptic curves in class 3528.u do not have complex multiplication.

## Modular form3528.2.a.u

sage: E.q_eigenform(10)

$$q + 2q^{5} - 2q^{11} - 2q^{13} + 6q^{17} + 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 