Show commands for:
SageMath

sage: E = EllipticCurve("t1")

sage: E.isogeny_class()

## Elliptic curves in class 3528.t

sage: E.isogeny_class().curves

LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|

3528.t1 | 3528p1 | [0, 0, 0, -294, -1715] | [2] | 1536 | \(\Gamma_0(N)\)-optimal |

3528.t2 | 3528p2 | [0, 0, 0, 441, -8918] | [2] | 3072 |

## Rank

sage: E.rank()

The elliptic curves in class 3528.t have rank \(1\).

## Complex multiplication

The elliptic curves in class 3528.t do not have complex multiplication.## Modular form 3528.2.a.t

sage: E.q_eigenform(10)

## Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.