Properties

Label 3528.t
Number of curves $2$
Conductor $3528$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("t1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3528.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
3528.t1 3528p1 [0, 0, 0, -294, -1715] [2] 1536 \(\Gamma_0(N)\)-optimal
3528.t2 3528p2 [0, 0, 0, 441, -8918] [2] 3072  

Rank

sage: E.rank()
 

The elliptic curves in class 3528.t have rank \(1\).

Complex multiplication

The elliptic curves in class 3528.t do not have complex multiplication.

Modular form 3528.2.a.t

sage: E.q_eigenform(10)
 
\( q + 2q^{5} - 6q^{11} + 6q^{13} - 2q^{17} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.