# Properties

 Label 3528.n Number of curves $2$ Conductor $3528$ CM no Rank $1$ Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("n1")

sage: E.isogeny_class()

## Elliptic curves in class 3528.n

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
3528.n1 3528h2 [0, 0, 0, -56595, 4605118] [2] 14336
3528.n2 3528h1 [0, 0, 0, 5145, 369754] [2] 7168 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 3528.n have rank $$1$$.

## Complex multiplication

The elliptic curves in class 3528.n do not have complex multiplication.

## Modular form3528.2.a.n

sage: E.q_eigenform(10)

$$q + 4q^{13} - 4q^{17} - 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.