Properties

Label 3525.c
Number of curves $1$
Conductor $3525$
CM no
Rank $0$

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("c1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3525.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3525.c1 3525h1 \([0, -1, 1, -658, -6282]\) \(2019487744/141\) \(2203125\) \([]\) \(1680\) \(0.27029\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3525.c1 has rank \(0\).

Complex multiplication

The elliptic curves in class 3525.c do not have complex multiplication.

Modular form 3525.2.a.c

sage: E.q_eigenform(10)
 
\(q - 2q^{2} - q^{3} + 2q^{4} + 2q^{6} + 3q^{7} + q^{9} + q^{11} - 2q^{12} + 2q^{13} - 6q^{14} - 4q^{16} - 2q^{17} - 2q^{18} + 6q^{19} + O(q^{20})\)  Toggle raw display