Show commands for:
SageMath
sage: E = EllipticCurve("g1")
sage: E.isogeny_class()
Elliptic curves in class 3520g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
3520.bd4 | 3520g1 | [0, -1, 0, -181, 981] | [2] | 1152 | \(\Gamma_0(N)\)-optimal |
3520.bd3 | 3520g2 | [0, -1, 0, -401, -1615] | [2] | 2304 | |
3520.bd2 | 3520g3 | [0, -1, 0, -1781, -27979] | [2] | 3456 | |
3520.bd1 | 3520g4 | [0, -1, 0, -28401, -1832815] | [2] | 6912 |
Rank
sage: E.rank()
The elliptic curves in class 3520g have rank \(0\).
Complex multiplication
The elliptic curves in class 3520g do not have complex multiplication.Modular form 3520.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.