Properties

Label 3520.p
Number of curves $4$
Conductor $3520$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 3520.p have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3520.p do not have complex multiplication.

Modular form 3520.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - 3 q^{9} + q^{11} - 2 q^{13} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 3520.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3520.p1 3520e4 \([0, 0, 0, -3788, 89712]\) \(22930509321/6875\) \(1802240000\) \([2]\) \(2048\) \(0.75406\)  
3520.p2 3520e3 \([0, 0, 0, -1868, -30352]\) \(2749884201/73205\) \(19190251520\) \([2]\) \(2048\) \(0.75406\)  
3520.p3 3520e2 \([0, 0, 0, -268, 1008]\) \(8120601/3025\) \(792985600\) \([2, 2]\) \(1024\) \(0.40748\)  
3520.p4 3520e1 \([0, 0, 0, 52, 112]\) \(59319/55\) \(-14417920\) \([2]\) \(512\) \(0.060908\) \(\Gamma_0(N)\)-optimal