Properties

Label 352.f
Number of curves $1$
Conductor $352$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 352.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
352.f1 352e1 \([0, 0, 0, 8, -112]\) \(13824/1331\) \(-5451776\) \([]\) \(96\) \(-0.027938\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 352.f1 has rank \(0\).

Complex multiplication

The elliptic curves in class 352.f do not have complex multiplication.

Modular form 352.2.a.f

sage: E.q_eigenform(10)
 
\(q + 3 q^{3} + q^{5} + 6 q^{9} - q^{11} - 6 q^{13} + 3 q^{15} - 4 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display