sage:E = EllipticCurve("c1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 352.c1 has
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
11 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+T+3T2 |
1.3.b
|
5 |
1−T+5T2 |
1.5.ab
|
7 |
1+4T+7T2 |
1.7.e
|
13 |
1+2T+13T2 |
1.13.c
|
17 |
1+17T2 |
1.17.a
|
19 |
1−2T+19T2 |
1.19.ac
|
23 |
1+9T+23T2 |
1.23.j
|
29 |
1−4T+29T2 |
1.29.ae
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 352.c do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 352.c
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
352.c1 |
352c1 |
[0,−1,0,−45,133] |
−2515456/11 |
−45056 |
[] |
32 |
−0.25392
|
Γ0(N)-optimal |