Properties

Label 352.c
Number of curves 11
Conductor 352352
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 352.c1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
11111+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+T+3T2 1 + T + 3 T^{2} 1.3.b
55 1T+5T2 1 - T + 5 T^{2} 1.5.ab
77 1+4T+7T2 1 + 4 T + 7 T^{2} 1.7.e
1313 1+2T+13T2 1 + 2 T + 13 T^{2} 1.13.c
1717 1+17T2 1 + 17 T^{2} 1.17.a
1919 12T+19T2 1 - 2 T + 19 T^{2} 1.19.ac
2323 1+9T+23T2 1 + 9 T + 23 T^{2} 1.23.j
2929 14T+29T2 1 - 4 T + 29 T^{2} 1.29.ae
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 352.c do not have complex multiplication.

Modular form 352.2.a.c

Copy content sage:E.q_eigenform(10)
 
qq3+q54q72q9q112q13q15+2q19+O(q20)q - q^{3} + q^{5} - 4 q^{7} - 2 q^{9} - q^{11} - 2 q^{13} - q^{15} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Elliptic curves in class 352.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
352.c1 352c1 [0,1,0,45,133][0, -1, 0, -45, 133] 2515456/11-2515456/11 45056-45056 [][] 3232 0.25392-0.25392 Γ0(N)\Gamma_0(N)-optimal