Properties

Label 350.d
Number of curves $1$
Conductor $350$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 350.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
350.d1 350f1 \([1, -1, 1, -180, 1047]\) \(-1026590625/100352\) \(-62720000\) \([]\) \(264\) \(0.23710\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 350.d1 has rank \(1\).

Complex multiplication

The elliptic curves in class 350.d do not have complex multiplication.

Modular form 350.2.a.d

sage: E.q_eigenform(10)
 
\(q + q^{2} - 3q^{3} + q^{4} - 3q^{6} - q^{7} + q^{8} + 6q^{9} - 5q^{11} - 3q^{12} - 6q^{13} - q^{14} + q^{16} - q^{17} + 6q^{18} - 3q^{19} + O(q^{20})\)  Toggle raw display