Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 350.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
350.a1 | 350c2 | \([1, 1, 0, -45, -185]\) | \(-417267265/235298\) | \(-5882450\) | \([]\) | \(72\) | \(0.0021345\) | |
350.a2 | 350c1 | \([1, 1, 0, 5, 5]\) | \(397535/392\) | \(-9800\) | \([]\) | \(24\) | \(-0.54717\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 350.a have rank \(1\).
Complex multiplication
The elliptic curves in class 350.a do not have complex multiplication.Modular form 350.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.