Properties

Label 34914.bb
Number of curves $1$
Conductor $34914$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bb1")
 
E.isogeny_class()
 

Elliptic curves in class 34914.bb

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
34914.bb1 34914bd1 \([1, 0, 0, -6359, 206295]\) \(-192100033/13662\) \(-2022466315518\) \([]\) \(63360\) \(1.1114\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 34914.bb1 has rank \(0\).

Complex multiplication

The elliptic curves in class 34914.bb do not have complex multiplication.

Modular form 34914.2.a.bb

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} - 2 q^{5} + q^{6} + q^{7} + q^{8} + q^{9} - 2 q^{10} - q^{11} + q^{12} + 3 q^{13} + q^{14} - 2 q^{15} + q^{16} + 2 q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display