Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
349022.a1 |
349022a1 |
349022.a |
349022a |
$1$ |
$1$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( 2^{2} \cdot 47^{6} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$316$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$844560$ |
$1.154509$ |
$4826809/316$ |
$0.94063$ |
$3.01582$ |
$[1, 1, 0, -7777, -251863]$ |
\(y^2+xy=x^3+x^2-7777x-251863\) |
316.2.0.? |
$[ ]$ |
349022.b1 |
349022b3 |
349022.b |
349022b |
$3$ |
$9$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( 2^{18} \cdot 47^{6} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$133668$ |
$144$ |
$3$ |
$6.232960430$ |
$1$ |
|
$0$ |
$12270960$ |
$2.604931$ |
$15698803397448457/20709376$ |
$1.00146$ |
$4.73194$ |
$[1, 0, 1, -11523295, 15055143922]$ |
\(y^2+xy+y=x^3-11523295x+15055143922\) |
3.4.0.a.1, 9.12.0.a.1, 141.8.0.?, 316.2.0.?, 423.24.0.?, $\ldots$ |
$[(158599/9, -686924/9)]$ |
349022.b2 |
349022b2 |
349022.b |
349022b |
$3$ |
$9$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( 2^{6} \cdot 47^{6} \cdot 79^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$133668$ |
$144$ |
$3$ |
$2.077653476$ |
$1$ |
|
$4$ |
$4090320$ |
$2.055626$ |
$59914169497/31554496$ |
$0.96798$ |
$3.75441$ |
$[1, 0, 1, -180080, 8805502]$ |
\(y^2+xy+y=x^3-180080x+8805502\) |
3.12.0.a.1, 141.24.0.?, 316.2.0.?, 711.36.0.?, 948.24.1.?, $\ldots$ |
$[(49, 291)]$ |
349022.b3 |
349022b1 |
349022.b |
349022b |
$3$ |
$9$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( 2^{2} \cdot 47^{6} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$133668$ |
$144$ |
$3$ |
$6.232960430$ |
$1$ |
|
$0$ |
$1363440$ |
$1.506319$ |
$11134383337/316$ |
$0.90937$ |
$3.62255$ |
$[1, 0, 1, -102765, -12688068]$ |
\(y^2+xy+y=x^3-102765x-12688068\) |
3.4.0.a.1, 9.12.0.a.1, 141.8.0.?, 316.2.0.?, 423.24.0.?, $\ldots$ |
$[(-4611/5, 12028/5)]$ |
349022.c1 |
349022c1 |
349022.c |
349022c |
$1$ |
$1$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( 2^{8} \cdot 47^{6} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$316$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3378240$ |
$1.458496$ |
$72511713/20224$ |
$0.89606$ |
$3.22812$ |
$[1, -1, 1, -19191, -731697]$ |
\(y^2+xy+y=x^3-x^2-19191x-731697\) |
316.2.0.? |
$[ ]$ |
349022.d1 |
349022d2 |
349022.d |
349022d |
$2$ |
$2$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( 2^{9} \cdot 47^{8} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$29704$ |
$12$ |
$0$ |
$2.372443298$ |
$1$ |
|
$2$ |
$15261696$ |
$2.685875$ |
$2448638586186625/7058620928$ |
$0.89622$ |
$4.58636$ |
$[1, 0, 0, -6202918, -5931925020]$ |
\(y^2+xy=x^3-6202918x-5931925020\) |
2.3.0.a.1, 8.6.0.b.1, 14852.6.0.?, 29704.12.0.? |
$[(6858, 520104)]$ |
349022.d2 |
349022d1 |
349022.d |
349022d |
$2$ |
$2$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( 2^{18} \cdot 47^{7} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$29704$ |
$12$ |
$0$ |
$1.186221649$ |
$1$ |
|
$5$ |
$7630848$ |
$2.339298$ |
$1687284042625/973340672$ |
$0.92018$ |
$4.01594$ |
$[1, 0, 0, -547878, -8836124]$ |
\(y^2+xy=x^3-547878x-8836124\) |
2.3.0.a.1, 8.6.0.c.1, 7426.6.0.?, 29704.12.0.? |
$[(-98, 6676)]$ |
349022.e1 |
349022e2 |
349022.e |
349022e |
$2$ |
$5$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( 2^{4} \cdot 47^{6} \cdot 79^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$74260$ |
$48$ |
$1$ |
$16.60323458$ |
$1$ |
|
$0$ |
$25336800$ |
$3.067184$ |
$1413378216646643521/49232902384$ |
$1.01962$ |
$5.08454$ |
$[1, 1, 1, -51646466, 142833648927]$ |
\(y^2+xy+y=x^3+x^2-51646466x+142833648927\) |
5.12.0.a.2, 235.24.0.?, 316.2.0.?, 1580.24.1.?, 74260.48.1.? |
$[(146733763/189, 13571153065/189)]$ |
349022.e2 |
349022e1 |
349022.e |
349022e |
$2$ |
$5$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( 2^{20} \cdot 47^{6} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$74260$ |
$48$ |
$1$ |
$3.320646917$ |
$1$ |
|
$2$ |
$5067360$ |
$2.262463$ |
$8194759433281/82837504$ |
$0.96131$ |
$4.13977$ |
$[1, 1, 1, -927826, -341360673]$ |
\(y^2+xy+y=x^3+x^2-927826x-341360673\) |
5.12.0.a.1, 235.24.0.?, 316.2.0.?, 1580.24.1.?, 74260.48.1.? |
$[(-519, 1107)]$ |
349022.f1 |
349022f4 |
349022.f |
349022f |
$4$ |
$4$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( 2 \cdot 47^{10} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$29704$ |
$48$ |
$0$ |
$61.63943045$ |
$1$ |
|
$0$ |
$6782976$ |
$2.449066$ |
$77619515367393/770989598$ |
$0.88923$ |
$4.31593$ |
$[1, -1, 1, -1963111, -1049065663]$ |
\(y^2+xy+y=x^3-x^2-1963111x-1049065663\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 376.24.0.?, 632.24.0.?, $\ldots$ |
$[(401448427508349016930347963/481255038386, 2963123307289307022221003518781451730169/481255038386)]$ |
349022.f2 |
349022f2 |
349022.f |
349022f |
$4$ |
$4$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( 2^{2} \cdot 47^{8} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$29704$ |
$48$ |
$0$ |
$30.81971522$ |
$1$ |
|
$2$ |
$3391488$ |
$2.102493$ |
$106294343553/55145476$ |
$0.90023$ |
$3.79932$ |
$[1, -1, 1, -218001, 12659261]$ |
\(y^2+xy+y=x^3-x^2-218001x+12659261\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 376.24.0.?, 632.24.0.?, 14852.24.0.?, $\ldots$ |
$[(28454556583787/186839, 123816355074297839406/186839)]$ |
349022.f3 |
349022f1 |
349022.f |
349022f |
$4$ |
$4$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( 2^{4} \cdot 47^{7} \cdot 79 \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$29704$ |
$48$ |
$0$ |
$15.40985761$ |
$1$ |
|
$3$ |
$1695744$ |
$1.755920$ |
$53881658433/59408$ |
$0.85285$ |
$3.74609$ |
$[1, -1, 1, -173821, 27910197]$ |
\(y^2+xy+y=x^3-x^2-173821x+27910197\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 376.24.0.?, 632.24.0.?, 7426.6.0.?, $\ldots$ |
$[(17371161/257, 7585747858/257)]$ |
349022.f4 |
349022f3 |
349022.f |
349022f |
$4$ |
$4$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( - 2 \cdot 47^{7} \cdot 79^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$29704$ |
$48$ |
$0$ |
$61.63943045$ |
$1$ |
|
$0$ |
$6782976$ |
$2.449066$ |
$5661642220767/3661307614$ |
$0.90224$ |
$4.11079$ |
$[1, -1, 1, 820229, 97794121]$ |
\(y^2+xy+y=x^3-x^2+820229x+97794121\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 376.24.0.?, 632.24.0.?, 29704.48.0.? |
$[(249006790728626360665996945/678754698048, 8181646193613483511729695644078935437209/678754698048)]$ |
349022.g1 |
349022g2 |
349022.g |
349022g |
$2$ |
$2$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( 2^{3} \cdot 47^{8} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$29704$ |
$12$ |
$0$ |
$11.72562961$ |
$1$ |
|
$0$ |
$5935104$ |
$2.462887$ |
$4231482925568625/1396088$ |
$0.91810$ |
$4.62922$ |
$[1, -1, 1, -7443640, 7818606979]$ |
\(y^2+xy+y=x^3-x^2-7443640x+7818606979\) |
2.3.0.a.1, 188.6.0.?, 632.6.0.?, 29704.12.0.? |
$[(156547/6, 51399439/6)]$ |
349022.g2 |
349022g1 |
349022.g |
349022g |
$2$ |
$2$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( - 2^{6} \cdot 47^{7} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$29704$ |
$12$ |
$0$ |
$5.862814806$ |
$1$ |
|
$3$ |
$2967552$ |
$2.116314$ |
$-1019627024625/18772928$ |
$1.00436$ |
$3.97893$ |
$[1, -1, 1, -463200, 123369923]$ |
\(y^2+xy+y=x^3-x^2-463200x+123369923\) |
2.3.0.a.1, 94.6.0.?, 632.6.0.?, 29704.12.0.? |
$[(-499, 15417)]$ |
349022.h1 |
349022h2 |
349022.h |
349022h |
$2$ |
$2$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( 2^{7} \cdot 47^{12} \cdot 79^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$376$ |
$12$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$249274368$ |
$4.274605$ |
$8539859737652459994284625/8610954607140992$ |
$1.01225$ |
$6.30795$ |
$[1, -1, 1, -9406716550, -351157471626347]$ |
\(y^2+xy+y=x^3-x^2-9406716550x-351157471626347\) |
2.3.0.a.1, 8.6.0.b.1, 188.6.0.?, 376.12.0.? |
$[ ]$ |
349022.h2 |
349022h1 |
349022.h |
349022h |
$2$ |
$2$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( - 2^{14} \cdot 47^{9} \cdot 79^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$376$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$124637184$ |
$3.928032$ |
$-2037633332486884268625/66255491230318592$ |
$1.05373$ |
$5.65872$ |
$[1, -1, 1, -583440390, -5574449612395]$ |
\(y^2+xy+y=x^3-x^2-583440390x-5574449612395\) |
2.3.0.a.1, 8.6.0.c.1, 94.6.0.?, 376.12.0.? |
$[ ]$ |
349022.i1 |
349022i2 |
349022.i |
349022i |
$2$ |
$2$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( 2 \cdot 47^{6} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$632$ |
$12$ |
$0$ |
$29.16409229$ |
$1$ |
|
$0$ |
$1271808$ |
$1.434608$ |
$81182737/12482$ |
$0.85973$ |
$3.23697$ |
$[1, 1, 1, -19927, -936101]$ |
\(y^2+xy+y=x^3+x^2-19927x-936101\) |
2.3.0.a.1, 8.6.0.b.1, 316.6.0.?, 632.12.0.? |
$[(-198585639600551/1369584, 57764798255327831621/1369584)]$ |
349022.i2 |
349022i1 |
349022.i |
349022i |
$2$ |
$2$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( - 2^{2} \cdot 47^{6} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$632$ |
$12$ |
$0$ |
$58.32818458$ |
$1$ |
|
$1$ |
$635904$ |
$1.088034$ |
$103823/316$ |
$0.80009$ |
$2.82855$ |
$[1, 1, 1, 2163, -79009]$ |
\(y^2+xy+y=x^3+x^2+2163x-79009\) |
2.3.0.a.1, 8.6.0.c.1, 158.6.0.?, 632.12.0.? |
$[(30331655693608528639548315/24505372351, 166679600079131210408414972549881341262/24505372351)]$ |
349022.j1 |
349022j2 |
349022.j |
349022j |
$2$ |
$2$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( 2^{3} \cdot 47^{8} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$29704$ |
$12$ |
$0$ |
$21.40748288$ |
$1$ |
|
$0$ |
$15261696$ |
$2.157833$ |
$191202526081/110290952$ |
$0.90220$ |
$3.84533$ |
$[1, 1, 1, -265126, 2881051]$ |
\(y^2+xy+y=x^3+x^2-265126x+2881051\) |
2.3.0.a.1, 8.6.0.b.1, 14852.6.0.?, 29704.12.0.? |
$[(-63034660535/11304, 5746098658395743/11304)]$ |
349022.j2 |
349022j1 |
349022.j |
349022j |
$2$ |
$2$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( 2^{6} \cdot 47^{7} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$29704$ |
$12$ |
$0$ |
$42.81496577$ |
$1$ |
|
$1$ |
$7630848$ |
$1.811260$ |
$56667352321/237632$ |
$0.80807$ |
$3.75004$ |
$[1, 1, 1, -176766, -28575109]$ |
\(y^2+xy+y=x^3+x^2-176766x-28575109\) |
2.3.0.a.1, 8.6.0.c.1, 7426.6.0.?, 29704.12.0.? |
$[(10582276567766507745/46752881, 34047207192667683967371035567/46752881)]$ |