Show commands for:
SageMath
sage: E = EllipticCurve("p1")
sage: E.isogeny_class()
Elliptic curves in class 348726p
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
348726.p1 | 348726p1 | [1, 0, 1, -93507, 10904170] | [2] | 2396160 | \(\Gamma_0(N)\)-optimal |
348726.p2 | 348726p2 | [1, 0, 1, -24917, 26570126] | [2] | 4792320 |
Rank
sage: E.rank()
The elliptic curves in class 348726p have rank \(1\).
Complex multiplication
The elliptic curves in class 348726p do not have complex multiplication.Modular form 348726.2.a.p
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.