Show commands for:
SageMath
sage: E = EllipticCurve("b1")
sage: E.isogeny_class()
Elliptic curves in class 348726b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
348726.b4 | 348726b1 | [1, 1, 0, -216246, 63047556] | [2] | 6912000 | \(\Gamma_0(N)\)-optimal |
348726.b3 | 348726b2 | [1, 1, 0, -4035626, 3117787680] | [2, 2] | 13824000 | |
348726.b1 | 348726b3 | [1, 1, 0, -64564496, 199655028570] | [2] | 27648000 | |
348726.b2 | 348726b4 | [1, 1, 0, -4616836, 2160302326] | [2] | 27648000 |
Rank
sage: E.rank()
The elliptic curves in class 348726b have rank \(1\).
Complex multiplication
The elliptic curves in class 348726b do not have complex multiplication.Modular form 348726.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.