Show commands for:
SageMath
sage: E = EllipticCurve("x1")
sage: E.isogeny_class()
Elliptic curves in class 348726.x
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
348726.x1 | 348726x1 | [1, 0, 1, -548006, -145152520] | [2] | 5836800 | \(\Gamma_0(N)\)-optimal |
348726.x2 | 348726x2 | [1, 0, 1, 549434, -653486728] | [2] | 11673600 |
Rank
sage: E.rank()
The elliptic curves in class 348726.x have rank \(1\).
Complex multiplication
The elliptic curves in class 348726.x do not have complex multiplication.Modular form 348726.2.a.x
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.