Properties

Label 348726.n
Number of curves $2$
Conductor $348726$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 348726.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
348726.n1 348726n1 [1, 0, 1, -366139565, 2696585928680] [3] 106375680 \(\Gamma_0(N)\)-optimal
348726.n2 348726n2 [1, 0, 1, -242986220, 4536447641642] [] 319127040  

Rank

sage: E.rank()
 

The elliptic curves in class 348726.n have rank \(1\).

Complex multiplication

The elliptic curves in class 348726.n do not have complex multiplication.

Modular form 348726.2.a.n

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{3} + q^{4} - 3q^{5} - q^{6} + q^{7} - q^{8} + q^{9} + 3q^{10} + 3q^{11} + q^{12} - 4q^{13} - q^{14} - 3q^{15} + q^{16} + 3q^{17} - q^{18} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.