Properties

Label 346800.ep
Number of curves $4$
Conductor $346800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ep1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 346800.ep have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 346800.ep do not have complex multiplication.

Modular form 346800.2.a.ep

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{7} + q^{9} + 6 q^{13} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 346800.ep

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
346800.ep1 346800ep4 \([0, -1, 0, -8437808, 9163778112]\) \(211293405175481/6973568802\) \(2192713185550464000000\) \([2]\) \(19660800\) \(2.8681\)  
346800.ep2 346800ep3 \([0, -1, 0, -8369808, 9322898112]\) \(206226044828441/236196\) \(74267580672000000\) \([2]\) \(9830400\) \(2.5216\)  
346800.ep3 346800ep2 \([0, -1, 0, -1161808, -481613888]\) \(551569744601/2592\) \(815007744000000\) \([2]\) \(3932160\) \(2.0634\)  
346800.ep4 346800ep1 \([0, -1, 0, -73808, -7245888]\) \(141420761/9216\) \(2897805312000000\) \([2]\) \(1966080\) \(1.7168\) \(\Gamma_0(N)\)-optimal