Show commands: SageMath
Rank
The elliptic curves in class 346800.ep have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 346800.ep do not have complex multiplication.Modular form 346800.2.a.ep
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 346800.ep
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 346800.ep1 | 346800ep4 | \([0, -1, 0, -8437808, 9163778112]\) | \(211293405175481/6973568802\) | \(2192713185550464000000\) | \([2]\) | \(19660800\) | \(2.8681\) | |
| 346800.ep2 | 346800ep3 | \([0, -1, 0, -8369808, 9322898112]\) | \(206226044828441/236196\) | \(74267580672000000\) | \([2]\) | \(9830400\) | \(2.5216\) | |
| 346800.ep3 | 346800ep2 | \([0, -1, 0, -1161808, -481613888]\) | \(551569744601/2592\) | \(815007744000000\) | \([2]\) | \(3932160\) | \(2.0634\) | |
| 346800.ep4 | 346800ep1 | \([0, -1, 0, -73808, -7245888]\) | \(141420761/9216\) | \(2897805312000000\) | \([2]\) | \(1966080\) | \(1.7168\) | \(\Gamma_0(N)\)-optimal |