Properties

Label 346560k
Number of curves $1$
Conductor $346560$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 346560k1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 346560k do not have complex multiplication.

Modular form 346560.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 3 q^{7} + q^{9} + q^{13} + q^{15} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 346560k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
346560.k1 346560k1 \([0, -1, 0, 100599, -50694615]\) \(1618496/16875\) \(-1173903877393920000\) \([]\) \(4202496\) \(2.1483\) \(\Gamma_0(N)\)-optimal