# Properties

 Label 346560ev Number of curves $2$ Conductor $346560$ CM no Rank $0$ Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("346560.ev1")

sage: E.isogeny_class()

## Elliptic curves in class 346560ev

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
346560.ev2 346560ev1 [0, -1, 0, -5221985, 4730906337] [2] 14008320 $$\Gamma_0(N)$$-optimal
346560.ev1 346560ev2 [0, -1, 0, -84237665, 297610425825] [2] 28016640

## Rank

sage: E.rank()

The elliptic curves in class 346560ev have rank $$0$$.

## Modular form 346560.2.a.ev

sage: E.q_eigenform(10)

$$q - q^{3} + q^{5} + 2q^{7} + q^{9} - 2q^{13} - q^{15} - 6q^{17} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.