Properties

Label 346560ds
Number of curves $2$
Conductor $346560$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("346560.ds1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 346560ds

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
346560.ds2 346560ds1 [0, -1, 0, -93505, 15249217] [2] 1966080 \(\Gamma_0(N)\)-optimal
346560.ds1 346560ds2 [0, -1, 0, -1649985, 816213825] [2] 3932160  

Rank

sage: E.rank()
 

The elliptic curves in class 346560ds have rank \(0\).

Modular form 346560.2.a.ds

sage: E.q_eigenform(10)
 
\( q - q^{3} + q^{5} - 2q^{7} + q^{9} + 2q^{13} - q^{15} - 2q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.