Properties

Label 346560.jy
Number of curves $4$
Conductor $346560$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("346560.jy1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 346560.jy

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
346560.jy1 346560jy4 [0, 1, 0, -14348065, -20893240225] [2] 17694720  
346560.jy2 346560jy2 [0, 1, 0, -1178785, -104214817] [2, 2] 8847360  
346560.jy3 346560jy1 [0, 1, 0, -716705, 231902175] [2] 4423680 \(\Gamma_0(N)\)-optimal
346560.jy4 346560jy3 [0, 1, 0, 4597215, -819283617] [2] 17694720  

Rank

sage: E.rank()
 

The elliptic curves in class 346560.jy have rank \(1\).

Modular form 346560.2.a.jy

sage: E.q_eigenform(10)
 
\( q + q^{3} + q^{5} + q^{9} + 4q^{11} + 2q^{13} + q^{15} + 2q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.