# Properties

 Label 346560.jg Number of curves $2$ Conductor $346560$ CM no Rank $1$ Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("346560.jg1")

sage: E.isogeny_class()

## Elliptic curves in class 346560.jg

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
346560.jg1 346560jg2 [0, 1, 0, -595644705, -5594836757697] [2] 74711040
346560.jg2 346560jg1 [0, 1, 0, -33755425, -104391847105] [2] 37355520 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 346560.jg have rank $$1$$.

## Modular form 346560.2.a.jg

sage: E.q_eigenform(10)

$$q + q^{3} + q^{5} - 2q^{7} + q^{9} - 2q^{13} + q^{15} - 2q^{17} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.