Show commands for:
SageMath
sage: E = EllipticCurve("r1")
sage: E.isogeny_class()
Elliptic curves in class 3465.r
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
3465.r1 | 3465h2 | [0, 0, 1, -241113, 861529329] | [] | 240000 | |
3465.r2 | 3465h1 | [0, 0, 1, -80463, -10287981] | [] | 48000 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 3465.r have rank \(1\).
Complex multiplication
The elliptic curves in class 3465.r do not have complex multiplication.Modular form 3465.2.a.r
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.