Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 345b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
345.d1 | 345b1 | \([0, 1, 1, -1, 1]\) | \(-262144/1035\) | \(-1035\) | \([]\) | \(16\) | \(-0.73608\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 345b1 has rank \(1\).
Complex multiplication
The elliptic curves in class 345b do not have complex multiplication.Modular form 345.2.a.b
sage: E.q_eigenform(10)