Properties

Label 3450.b
Number of curves $2$
Conductor $3450$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("b1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3450.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3450.b1 3450c2 \([1, 1, 0, -98125, -11871875]\) \(6687281588245201/165600\) \(2587500000\) \([2]\) \(11520\) \(1.3246\)  
3450.b2 3450c1 \([1, 1, 0, -6125, -187875]\) \(-1626794704081/8125440\) \(-126960000000\) \([2]\) \(5760\) \(0.97805\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 3450.b have rank \(0\).

Complex multiplication

The elliptic curves in class 3450.b do not have complex multiplication.

Modular form 3450.2.a.b

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - q^{8} + q^{9} - 2q^{11} - q^{12} - 4q^{13} + q^{16} - 6q^{17} - q^{18} - 8q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.