Properties

Label 34496cq
Number of curves $2$
Conductor $34496$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 34496cq have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 34496cq do not have complex multiplication.

Modular form 34496.2.a.cq

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 3 q^{5} - 2 q^{9} - q^{11} - 4 q^{13} + 3 q^{15} - 6 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 34496cq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
34496.x2 34496cq1 \([0, -1, 0, 523, -5459]\) \(8192/11\) \(-21203173376\) \([]\) \(23040\) \(0.66723\) \(\Gamma_0(N)\)-optimal
34496.x1 34496cq2 \([0, -1, 0, -15157, -717331]\) \(-199794688/1331\) \(-2565583978496\) \([]\) \(69120\) \(1.2165\)