Show commands:
SageMath
E = EllipticCurve("l1")
E.isogeny_class()
Elliptic curves in class 343230.l
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
343230.l1 | 343230l2 | \([1, 0, 0, -16943009365, -848857250127235]\) | \(-537892346392757834815139433407447761/63783099740879053154940\) | \(-63783099740879053154940\) | \([]\) | \(337446144\) | \(4.2405\) | |
343230.l2 | 343230l1 | \([1, 0, 0, 14097935, -37071642775]\) | \(309877627207229469173251439/773065454327965440000000\) | \(-773065454327965440000000\) | \([7]\) | \(48206592\) | \(3.2676\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 343230.l have rank \(0\).
Complex multiplication
The elliptic curves in class 343230.l do not have complex multiplication.Modular form 343230.2.a.l
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.