The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000
| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 34.a1 |
34a4 |
34.a |
34a |
$4$ |
$6$ |
\( 2 \cdot 17 \) |
\( 2 \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.6, 3.8.0.2 |
2B, 3B.1.2 |
$408$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$12$ |
$0.179487$ |
$159661140625/48275138$ |
$1.06848$ |
$7.31528$ |
$[1, 0, 0, -113, -329]$ |
\(y^2+xy=x^3-113x-329\) |
2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 8.6.0.b.1, 24.48.0-24.y.1.13, $\ldots$ |
$[ ]$ |
$1$ |
| 34.a2 |
34a3 |
34.a |
34a |
$4$ |
$6$ |
\( 2 \cdot 17 \) |
\( 2^{2} \cdot 17^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.1, 3.8.0.2 |
2B, 3B.1.2 |
$408$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$6$ |
$-0.167086$ |
$120920208625/19652$ |
$0.98564$ |
$7.23647$ |
$[1, 0, 0, -103, -411]$ |
\(y^2+xy=x^3-103x-411\) |
2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 8.6.0.c.1, 24.48.0-24.bw.1.11, $\ldots$ |
$[ ]$ |
$1$ |
| 34.a3 |
34a2 |
34.a |
34a |
$4$ |
$6$ |
\( 2 \cdot 17 \) |
\( 2^{3} \cdot 17^{2} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.6, 3.8.0.1 |
2B, 3B.1.1 |
$408$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$4$ |
$4$ |
$-0.369819$ |
$8805624625/2312$ |
$0.96590$ |
$6.49357$ |
$[1, 0, 0, -43, 105]$ |
\(y^2+xy=x^3-43x+105\) |
2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 8.6.0.b.1, 24.48.0-24.y.1.15, $\ldots$ |
$[ ]$ |
$1$ |
| 34.a4 |
34a1 |
34.a |
34a |
$4$ |
$6$ |
\( 2 \cdot 17 \) |
\( 2^{6} \cdot 17 \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$408$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$5$ |
$2$ |
$-0.716393$ |
$3048625/1088$ |
$0.90010$ |
$4.23388$ |
$[1, 0, 0, -3, 1]$ |
\(y^2+xy=x^3-3x+1\) |
2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 8.6.0.c.1, 24.48.0-24.bw.1.15, $\ldots$ |
$[ ]$ |
$1$ |
Download
displayed columns for
results