Properties

Label 33a
Number of curves $4$
Conductor $33$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 33a have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 33a do not have complex multiplication.

Modular form 33.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} - q^{4} - 2 q^{5} - q^{6} + 4 q^{7} - 3 q^{8} + q^{9} - 2 q^{10} + q^{11} + q^{12} - 2 q^{13} + 4 q^{14} + 2 q^{15} - q^{16} - 2 q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 33a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
33.a2 33a1 \([1, 1, 0, -11, 0]\) \(169112377/88209\) \(88209\) \([2, 2]\) \(3\) \(-0.35921\) \(\Gamma_0(N)\)-optimal
33.a3 33a2 \([1, 1, 0, -6, -9]\) \(30664297/297\) \(297\) \([2]\) \(6\) \(-0.70578\)  
33.a1 33a3 \([1, 1, 0, -146, 621]\) \(347873904937/395307\) \(395307\) \([4]\) \(6\) \(-0.012632\)  
33.a4 33a4 \([1, 1, 0, 44, 55]\) \(9090072503/5845851\) \(-5845851\) \([2]\) \(6\) \(-0.012632\)