Show commands:
SageMath
E = EllipticCurve("m1")
E.isogeny_class()
Elliptic curves in class 339762m
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
339762.m2 | 339762m1 | \([1, 0, 0, -104160156, 409155902352]\) | \(124976563139916356014105311169/836805677420123692416\) | \(836805677420123692416\) | \([7]\) | \(43750336\) | \(3.1967\) | \(\Gamma_0(N)\)-optimal |
339762.m1 | 339762m2 | \([1, 0, 0, -3106076766, -66605543437698]\) | \(3314059238965717412166686272528609/1392335368399818889959574566\) | \(1392335368399818889959574566\) | \([]\) | \(306252352\) | \(4.1697\) |
Rank
sage: E.rank()
The elliptic curves in class 339762m have rank \(0\).
Complex multiplication
The elliptic curves in class 339762m do not have complex multiplication.Modular form 339762.2.a.m
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.