Properties

Label 33813o
Number of curves $4$
Conductor $33813$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 33813o have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(13\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 33813o do not have complex multiplication.

Modular form 33813.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + 2 q^{5} + 4 q^{7} + 3 q^{8} - 2 q^{10} + 4 q^{11} + q^{13} - 4 q^{14} - q^{16} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 33813o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
33813.e4 33813o1 \([1, -1, 1, 1246, 35768]\) \(12167/39\) \(-686255224239\) \([2]\) \(40960\) \(0.95440\) \(\Gamma_0(N)\)-optimal
33813.e3 33813o2 \([1, -1, 1, -11759, 425918]\) \(10218313/1521\) \(26763953745321\) \([2, 2]\) \(81920\) \(1.3010\)  
33813.e2 33813o3 \([1, -1, 1, -50774, -3974974]\) \(822656953/85683\) \(1507702727653083\) \([2]\) \(163840\) \(1.6475\)  
33813.e1 33813o4 \([1, -1, 1, -180824, 29640350]\) \(37159393753/1053\) \(18528891054453\) \([2]\) \(163840\) \(1.6475\)