Show commands for:
SageMath
sage: E = EllipticCurve("r1")
sage: E.isogeny_class()
Elliptic curves in class 338130r
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
338130.r1 | 338130r1 | [1, -1, 0, -795960, -156528320] | [2] | 7077888 | \(\Gamma_0(N)\)-optimal |
338130.r2 | 338130r2 | [1, -1, 0, 2533320, -1128012224] | [2] | 14155776 |
Rank
sage: E.rank()
The elliptic curves in class 338130r have rank \(0\).
Complex multiplication
The elliptic curves in class 338130r do not have complex multiplication.Modular form 338130.2.a.r
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.