Properties

Label 338130.y
Number of curves $8$
Conductor $338130$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("y1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 338130.y

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
338130.y1 338130y7 \([1, -1, 0, -17143191015660, 27320313468836296300]\) \(31664865542564944883878115208137569/103216295812500\) \(1816223646869901133312500\) \([2]\) \(7644119040\) \(5.7401\)  
338130.y2 338130y6 \([1, -1, 0, -1071449453160, 426880086563858800]\) \(7730680381889320597382223137569/441370202660156250000\) \(7766477112793805170628906250000\) \([2, 2]\) \(3822059520\) \(5.3935\)  
338130.y3 338130y8 \([1, -1, 0, -1069506558180, 428505349689527476]\) \(-7688701694683937879808871873249/58423707246780395507812500\) \(-1028040367115717170000076293945312500\) \([2]\) \(7644119040\) \(5.7401\)  
338130.y4 338130y4 \([1, -1, 0, -211651864920, 37473670967754496]\) \(59589391972023341137821784609/8834417507562311995200\) \(155452953017259535808493730555200\) \([2]\) \(2548039680\) \(5.1908\)  
338130.y5 338130y3 \([1, -1, 0, -67087036440, 6644606911560256]\) \(1897660325010178513043539489/14258428094958372000000\) \(250895404348751670826419972000000\) \([2]\) \(1911029760\) \(5.0470\)  
338130.y6 338130y2 \([1, -1, 0, -14454448920, 470482963468096]\) \(18980483520595353274840609/5549773448629762560000\) \(97655410832437591100054530560000\) \([2, 2]\) \(1274019840\) \(4.8442\)  
338130.y7 338130y1 \([1, -1, 0, -5452075800, -149202592145600]\) \(1018563973439611524445729/42904970360310988800\) \(754968206553406826787687628800\) \([2]\) \(637009920\) \(4.4977\) \(\Gamma_0(N)\)-optimal
338130.y8 338130y5 \([1, -1, 0, 38704997160, 3127062489980800]\) \(364421318680576777174674911/450962301637624725000000\) \(-7935262447017018271133479725000000\) \([2]\) \(2548039680\) \(5.1908\)  

Rank

sage: E.rank()
 

The elliptic curves in class 338130.y have rank \(1\).

Complex multiplication

The elliptic curves in class 338130.y do not have complex multiplication.

Modular form 338130.2.a.y

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} + 4q^{7} - q^{8} + q^{10} + q^{13} - 4q^{14} + q^{16} - 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 3 & 4 & 6 & 12 & 12 \\ 2 & 1 & 2 & 6 & 2 & 3 & 6 & 6 \\ 4 & 2 & 1 & 12 & 4 & 6 & 12 & 3 \\ 3 & 6 & 12 & 1 & 12 & 2 & 4 & 4 \\ 4 & 2 & 4 & 12 & 1 & 6 & 3 & 12 \\ 6 & 3 & 6 & 2 & 6 & 1 & 2 & 2 \\ 12 & 6 & 12 & 4 & 3 & 2 & 1 & 4 \\ 12 & 6 & 3 & 4 & 12 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.