Properties

Label 338130.t
Number of curves $2$
Conductor $338130$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("t1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 338130.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
338130.t1 338130t1 [1, -1, 0, -13722930, -14998822700] [2] 46792704 \(\Gamma_0(N)\)-optimal
338130.t2 338130t2 [1, -1, 0, 32262750, -94084995164] [2] 93585408  

Rank

sage: E.rank()
 

The elliptic curves in class 338130.t have rank \(1\).

Complex multiplication

The elliptic curves in class 338130.t do not have complex multiplication.

Modular form 338130.2.a.t

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{4} - q^{5} + 2q^{7} - q^{8} + q^{10} - 6q^{11} + q^{13} - 2q^{14} + q^{16} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.